

# Down-regulation of *bcr-abl* and *bcl-*x<sub>L</sub> Expression in a Leukemia Cell Line and Its Doxorubicin-Resistant Variant by Topoisomerase II Inhibitors

Audrey Laroche-Clary, Annick Larrue and Jacques Robert\*
Institut Bergonié and Université Victor Segalen, 33076 Bordeaux cedex, France

**ABSTRACT.** K562 cells are usually resistant to apoptosis induction, probably because of the expression of bcr-abl, the hybrid gene characteristic of the Philadelphia chromosome (t 9;22). However, we have previously shown that amsacrine and, to a lesser extent, doxorubicin, could induce apoptosis in the doxorubicin-resistant variant of this cell line. In order to elucidate the role of bcr-abl in triggering apoptosis, we investigated the effect of the topoisomerase II inhibitors doxorubicin, amsacrine, and etoposide on the expression of several genes that may be related to apoptosis induction in both cell lines. This was done using a technique of reverse transcription–polymerase chain reaction coupled with HPLC of the amplified fragments to obtain semiquantitative evaluations. We showed that amsacrine, at pharmacologically relevant concentrations, was able to decrease the expression of bcr-abl down to 20% of the basal value in the doxorubicin-resistant variant only, whereas doxorubicin and etoposide were unable to do so. No effect of these drugs was seen on the expression of the normal abl gene. In addition, there was an effect of amsacrine on the expression of bcl- $x_L$  in the resistant cell line only, but at concentrations higher than the  $IC_{50}$  of this drug. Our results emphasize the role of bcr-abl in protecting cells from apoptosis and the possible involvement of specific topoisomerase II inhibitors in overcoming resistance to apoptosis.

BIOCHEM PHARMACOL **60**;12:1823–1828, 2000. © 2000 Elsevier Science Inc.

KEY WORDS. topoisomerase II; bcr-abl gene; bcl- $x_L$  gene; apoptosis; amsacrine; chronic myeloid leukemia

c-myc gene.

DNA topoisomerase II is a nuclear enzyme involved in DNA replication and transcription and in chromatin organization [1]. Drugs such as anthracyclines, acridines, or epipodophyllotoxins are called topoisomerase II poisons because they are able to stabilize the DNA-topoisomerase II cleavable complex at specific sites. Stabilization of a cleavable complex and the subsequent formation of DNA double-strand breaks have been shown to be correlated to drug cytotoxicity and/or antiproliferative activity. Although the formation of topoisomerase II-DNA complexes requires some sequence specificity that may vary as a function of the drug stabilizing the complex [2], it is not known whether it occurs all over the genome or at the level of specific genes, some of which are involved in cell death or proliferation. It was reported that there was no direct correlation between the number of DNA double-strand breaks and the cytotoxicity of various topoisomerase IIinteracting drugs [3], suggesting that cytotoxic effects result from the stabilization of specific sites rather than of random sites on the DNA. Riou et al. [4] were the first to show the existence of a specific site for amsacrine-induced DNA breaks in the promoter P2 of the c-myc gene in N417 cells.

and to a lesser extent doxorubicin, were able to induce

apoptosis in the doxorubicin-resistant variant of K562

cells, but not in wild-type K562 cells at similarly cyto-

toxic concentrations. We thus wanted to know whether

the ability to undergo apoptosis could be associated with a specific effect of these drugs on the expression of the

We confirmed [5] that, in K562 leukemia cells, doxorubicin

and amsacrine could stabilize the cleavable complex at least

at one specific site, located within the promoter P2 of the

apoptosis-resistant phenotype upon the action of most

antiproliferative agents. Such a survival advantage has been

It was previously demonstrated that K562 cells exhibit an

We studied here the effect of amsacrine, doxorubicin, and etoposide on the expression of the *bcr-abl*, *abl*, and

bcr-abl or the bcl-x<sub>L</sub> genes.

associated in tumor cells with the overexpression of the antiapoptotic protein BCL-2 [6] or of the hybrid protein tyrosine kinase encoded by the *bcr-abl* gene resulting from the t(9;22) translocation characteristic of this cell line [7]. In fact, apoptosis sensitivity of K562 cells could be restored by *bcr-abl* antisense oligonucleotides [8]. In addition, Belloc *et al.* [9] showed that induction of resistance to apoptosis in other leukemia cell lines was accompanied by *bcr-abl* translocation and overexpression. In a prior study, we demonstrated that amsacrine,

<sup>\*</sup> Corresponding author: Dr. Jacques Robert, Institut Bergonié, 180 Rue de Saint-Genès, F-33076 Bordeaux-cédex, France. Tel. +33 556 33 33 27; FAX +33 556 33 33 27; E-mail: robert@bergonie.org

Received 8 December 1999; accepted 12 May 2000.

1824 A. Laroche-Clary et al.

bcl-x<sub>L</sub> genes by the method of RT–PCR\* coupled with HPLC. The expression of the normal *abl* allele was also evaluated as a control. We show that apoptosis induction in doxorubicin-resistant K562 cells is associated with the decrease in *bcr-abl* and *bcl-x*<sub>L</sub> expression occurring upon the action of amsacrine and, only for *bcr-abl*, of doxorubicin.

# MATERIALS AND METHODS Drugs and Chemicals

Doxorubicin hydrochloride (Adriblastine®) was obtained from Pharmacia & Upjohn, amsacrine (Amsidine®) from Parke-Davis, and etoposide from Novartis. All other chemicals were of reagent grade.

#### Cell Lines and Culture Conditions

The human myelogenous leukemia cell line K562 [10] and its doxorubicin-resistant variant K562doxR [11] were maintained in RPMI-1640 medium containing 10% fetal bovine serum and antibiotic mixture. The K562doxR resistant subline was continuously grown in the presence of 0.2 µg/mL of doxorubicin, which was discontinued one week before each experiment.

## Cytotoxicity

For the sensitive line, 1000 cells were seeded in each well of 96-well plates. Two days later, incubations with doxorubicin, amsacrine, and etoposide were performed for 2 hr at appropriate concentrations. At the end of the incubations, the medium was removed and, after centrifugation, the cells were washed with buffered saline and allowed to grow for 2 days in fresh medium. For the resistant line, which has a different growth pattern, the seeding was of 2000 cells, the delay before drug incubation was 3 days, and the regrowth in fresh medium also 3 days. At this time, the surviving cells were estimated by the MTT (3,4,5-trimethylthiazol-2,5-diphenyltetrazolium bromide) assay [12].

#### RNA Extraction and RT-PCR

Total cellular RNAs were isolated using the guanidine isothiocyanate method as described by Glisin *et al.* [13]. The conditions of reverse transcription were as follows:  $1 \times \text{buffer}$  (KCl 50 mM, Tris–HCl 10 mM, pH 8.3), MgCl<sub>2</sub> 1.2 mM, dNTP 1 mM each, RNase inhibitor 40 U, random hexamers 2.5  $\mu$ M, and reverse transcriptase (MuLV) 100 U in a volume of 50  $\mu$ L. Reverse transcription was performed at 42° for 15 min and inactivation of the enzyme was carried out at 99° for 5 min. The primers used for PCR were the following:

bcr-abl, sense: 5'-GAAGAAGTGTTTCAGAAGCT TCTCC-3';

bcr-abl, antisense: 5'-GACCCGGAGCTTTTCACCTT TAGTT-3';

abl, sense: 5'-GCCGCTCGTTGGGAACTCCAAGG-3';
abl, antisense: 5'-GACCGGAGCTTTTCACCTT
TAGTT-3';

bcl-x<sub>L</sub>, sense: 5'-GGACTGAGGCCCCAGAAGGG-3'; bcl-x<sub>L</sub>, antisense: 5'-GGGTCGAGGTGTAGTGGGGT-3'; β-actin, sense: 5'-GAGAAGATGACCCAGATCATGT

β-actin, antisense: 5'-CAGAGGCGTACAGGGATAG CAC-3'.

For all the genes, PCR was performed on 5 µL of cDNA. A typical 50-µL reaction mixture contained 50 mM KCl, 10 mM Tris–HCl, pH 8.3, 1.5 mM MgCl<sub>2</sub>, 0.2 mM dNTP, 1.5 µM of each primer, and 2.5 U of Taq polymerase (all reagents obtained from Perkin Elmer). The initial heating step was performed at 94° for 3 min, 65° for 1 min, and 72° for 1 min, and the subsequent 30 cycles were performed at 94° for 1.5 min, 65° for 1 min, and 72° for 1 min. PCR was conducted in a thermocycler (model Gene Amp PCR system 2400, Perkin Elmer).

#### **HPLC**

The amplification products of the gene of interest (20  $\mu$ L) were mixed with those of  $\beta$ -actin (10  $\mu$ L) and injected onto a high-performance liquid chromatograph (Thermo-Quest) equipped with an ion-exchange column (TSK DEAE-NPR, particle size 2.5  $\mu$ m, Perkin Elmer). The DNA fragments were detected with a UV detector (UV 1000, ThermoQuest). The column was equilibrated with the starting eluent (25 mM Tris–HCl in 1 M NaCl) for 30 min at a flow rate of 1 mL/min at room temperature. A gradient was then run through the column, with a progressive increase in the proportion of NaCl in 25 mM Tris–HCl (from 250 mM to 1 M) as described by the manufacturer. Between runs, the column was washed and regenerated with 0.2 M NaOH. Peaks were integrated with an automatic integrator (LCI 100, Perkin Elmer).

#### Western Blotting

After a 2-hr exposure with amsacrine or doxorubicin,  $10^7$  cells were incubated with isotonic buffer (Tris 40 mM, pH 8). After centrifugation, the pellet was resuspended and incubated in ice-cold hypotonic buffer (Tris 5 mM, pH 8, MgCl<sub>2</sub> 6 mM, and aprotinin 0.05 U) for 15 min. Cells were then sonicated and 250  $\mu$ L of hypertonic buffer was added (Tris 80 mM, pH 8, MgCl<sub>2</sub> 6 mM, DNase I 20 U, and aprotinin 0.05 U). After a 30-min incubation at room temperature, DNA was precipitated and, after centrifugation, proteins were quantified in the supernatant using the Bradford assay. Protein analysis was performed by Western blotting after electrophoresis as described by Laemmli [14]. The BCR-ABL protein was revealed with a rabbit polyclonal antibody (Oncogene Products, PC01) at a 1:200

<sup>\*</sup> Abbreviation: RT-PCR, reverse transcription-polymerase chain reaction.

TABLE 1. Cytotoxicity of amsacrine, doxorubicin, and etoposide on K562 and K562doxR cells

|             | K562 cells     | K652doxR<br>cells |
|-------------|----------------|-------------------|
| Amsacrine   | $1.5 \pm 0.1$  | 111 ± 13          |
| Doxorubicin | $1.3 \pm 0.09$ | $30.0 \pm 5.1$    |
| Etoposide   | $1.3 \pm 0.12$ | $37.1 \pm 1.4$    |

Cytotoxicity was estimated as  $IC_{50}$ , i.e. the drug concentration ( $\mu$ M) providing a 50% decrease in cell survival, evaluated as described in Materials and Methods. Results are means  $\pm$  SD of three independent determinations.

dilution. The secondary antibody (diluted at 1:4000) was coupled with peroxidase, and revelation was performed with the ECL<sup>+</sup> system (Amersham).

#### **DNA Fragmentation Assay**

Apoptosis was evaluated by DNA fragmentation, which was quantified by the filter elution method described by Fan et al. [15] with some modifications, as already described [5]. Briefly, cells were labeled with [methyl- $^3$ H]thymidine (Amersham; 0.5  $\mu$ Ci/mL of medium) for 1.5 to 2 doubling times. After a chase period of 20 hr in fresh label-free medium,  $1-2 \times 10^6$  cells in each flask were treated with different drug concentrations for 2 hr at 37°. The cells were centrifuged, washed with prewarmed buffered saline solution, and reincubated in fresh medium for 48 hr. After lysis of the cells and treatment of the filter, radioactivity on the filter and in the different fractions was counted.

## **RESULTS**

# Cytotoxicity of Amsacrine, Doxorubicin, and Etoposide in K562 and K562doxR Cells

The cytotoxicity of the three drugs in both cell lines was evaluated as their  ${\rm IC}_{50}$  determined as described in Materials and Methods. Table 1 presents these  ${\rm IC}_{50}$  values. The evaluation of gene expression was studied as a function of these  ${\rm IC}_{50}$  values in order to work on both cell lines with similarly cytotoxic concentrations and compensate for the differences in P-glycoprotein activity in the sensitive and the resistant cell line.

## Evaluation of Apoptosis Produced by Etoposide

We had already shown that amsacrine and doxorubicin produced very few apoptotic cells in the K562 cell line at pharmacologically relevant concentrations, while in K562doxR cells, amsacrine and, to a lesser extent, doxorubicin, induced apoptosis at  $\text{IC}_{50}$  [5]. Here, we investigated whether a non-intercalating drug such as etoposide could also specifically induce apoptosis in the resistant cell line. K562 and K562doxR were exposed to etoposide for 2 hr and apoptosis was evaluated 48 hr after treatment (Fig. 1). In sensitive cells, there was no apoptosis at the  $\text{IC}_{50}$  value (1.3  $\mu$ M) while at 10  $\mu$ M, etoposide induced a slight DNA

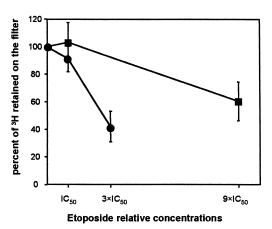



FIG. 1. Quantification of apoptosis induced by etoposide in K562 cells (■) and in K562doxR cells (●). Values are means ± SD of three independent experiments.

fragmentation. In the resistant line, we obtained the same result as in the sensitive one: no apoptosis at the IC<sub>50</sub> value (37.1  $\mu$ M) and some DNA fragmentation at high concentration (3  $\times$  IC<sub>50</sub>).

## Expression of bcr-abl and abl

We evaluated the effects of 2-hr exposures to amsacrine, doxorubicin, and etoposide on bcr-abl and abl gene expression, as assessed by RT-PCR coupled with HPLC, by comparison with a housekeeping gene, β-actin. Amsacrine and doxorubicin, at about their IC50, produced a small decrease (at most 20%) in bcr-abl and abl gene expressions in the K562 cell line (Fig. 2). In the K562doxR cell line, amsacrine concentration dependently induced an important decrease in bcr-abl gene expression of about 80% of the initial value, while doxorubicin produced a smaller decrease in bcr-abl gene expression (60% of the initial value at the IC50 of the drug) (Fig. 3). The decrease in specific bcr-abl mRNA levels was accompanied by a decrease in the levels of the hybrid protein BCR-ABL as evaluated by Western blotting (data not shown). By contrast, there was no modification in abl gene expression with the two drugs. Etoposide exerted no effect on the expression of bcr-abl and abl genes in any of the cell lines.

#### Expression of bcl- $x_L$

We evaluated the expression of the bcl- $x_L$  gene in the two cell lines under the same conditions as the bcr-abl and abl genes. In K562 cells, amsacrine produced a slight decrease in bcl- $x_L$  expression, down to 40% of the initial value, but only at high concentration (3  $\times$  IC<sub>50</sub>), while doxorubicin and etoposide produced no decrease in bcl- $x_L$  gene expression (Fig. 2). In K562doxR cells, amsacrine induced an important decrease in bcl- $x_L$ , down to 20% of the initial value, but this diminution was not concentration-dependent and occurred only beyond the IC<sub>50</sub>, while doxorubicin and etoposide produced no specific decrease in this cell line

1826 A. Laroche-Clary et al.

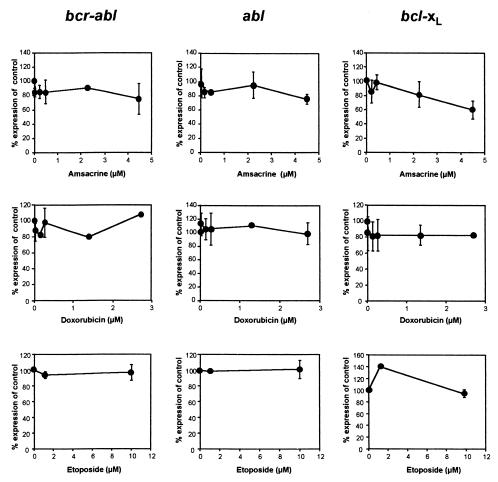



FIG. 2. Effects of amsacrine, doxorubicin, and etoposide on the expression of *bcr-abl*, *abl*, and *bcl-x*<sub>L</sub> genes in K562 cells exposed for 2 hr to various drug concentrations. These concentrations were chosen on both sides of their  $IC_{50}$ S. Gene expression was quantified by RT-PCR coupled with HPLC relative to the expression of  $\beta$ -actin. Results are means  $\pm$  SD of three independent experiments.

(Fig. 3). There was a good correlation between *bcr-abl* and *bcl-x<sub>L</sub>* expression in amsacrine-treated K562doxR cells (Fig. 4).

#### DISCUSSION

We had already shown that amsacrine and, to a lesser extent, doxorubicin, were able to induce apoptosis in K562doxR cells but not in K562 wild-type cells at similarly cytotoxic concentrations [5]. In the literature, it was postulated that the K562 line could not undergo apoptosis because it expressed the hybrid bcr-abl gene. Our results show that amsacrine and doxorubicin produced a decrease in bcr-abl gene expression that was correlated with apoptosis induction. The amsacrine-induced diminution of the bcr-abl mRNA level was correlated with a decrease in protein expression, while such was not the case for doxorubicin. Our results suggest that the diminution of bcr-abl expression was responsible for the reinduction of the apoptosis pathway. Belloc et al. [9] have observed, in other leukemia cell lines able to undergo apoptosis, that the selection of daunorubicin-resistant cells was accompanied both by induction of resistance to apoptosis and by expression of the bcr-abl hybrid gene, whereas the original lines did not display the t(9;22) translocation.

Benito et al. [16] reported that the BCL-2 protein was weakly expressed in K562 cells, while the bcl-2 gene was expressed at a high level; in fact, this was due to the overexpression of bcl-x<sub>L</sub>, a gene closely related to bcl-2. In this work, we have shown that amsacrine induced an important decrease in bcl-x<sub>L</sub> gene expression in the resistant cell line only, and this occurred at higher drug concentrations than the decrease in bcr-abl expression. Therefore, amsacrine seems to be able to reinduce the apoptosis pathway in K562doxR via a diminution of both bcr-abl and bcl-x<sub>L</sub> gene expressions. These two genes appear to display a concerted effect on the trigger of apoptosis: a scheme was proposed by Datta et al. [17] where BCR-ABL, in response to interleukin-3, activates the AKT protein, which is in turn able to phosphorylate the BAD protein. BAD becomes unable to bind BCL-X<sub>L</sub>, which is then active for the inhibition of apoptosis. The effect of amsacrine on the expression of these two genes in the K562doxR cell line is difficult to assign to a direct effect (targeting a topoisomerase II-induced cleavage site in the promoter of the bcr gene, for instance) or to an indirect effect (via a transcription factor common to bcr-abl and bcl- $x_1$ ).

In order to see whether the effects observed with amsacrine on gene expression were or were not common to all

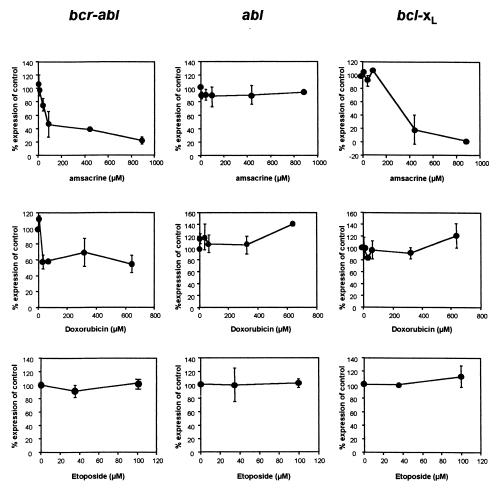



FIG. 3. Effects of amsacrine, doxorubicin, and etoposide on the expression of bcr-abl, abl, and bcl-x<sub>L</sub> genes in K562doxR cells exposed for 2 hr to various drug concentrations. Same legend as Fig. 2.

topoisomerase II poisons, we have evaluated the ability of etoposide to induce apoptosis and to decrease bcr-abl and bcl- $x_L$  gene expression. Whereas amsacrine and doxorubicin were able to induce apoptosis at their  $IC_{50}$  in the resistant cell line [5], etoposide was unable to do so and DNA fragmentation was only detected far above the  $IC_{50}$  value. Ritke et al. [18] also showed that etoposide could induce

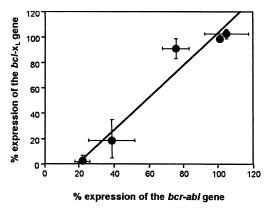



FIG. 4. Linear regression between bcr-abl and  $bcl-x_L$  gene expressions in K562doxR cells treated with amsacrine. r = 0.97, P < 0.01.

apoptosis in K562 cells at 100  $\mu$ M. No modification of bcr-abl and bcl-x<sub>L</sub> gene expression was observed in the two cell lines, even at the high concentrations where apoptosis occurs. It therefore appears that this minimal etoposide-induced apoptosis in our lines is independent of bcr-abl and bcl-x<sub>L</sub> gene expression. In the HL60 cell line, it has been shown that etoposide induced a death pathway dependent on DNase II and not on classical endonucleases [19], suggesting that events occurring prior to enzyme activation are different for etoposide and other topoisomerase II poisons.

The mechanism by which amsacrine and, to a lesser extent, doxorubicin are able to down-regulate *bcr-abl* and *bcl-x<sub>L</sub>* remains unknown. It was suggested by Pommier *et al.* [20] that the down-regulation of *c-myc* they observed with amsacrine, and not with etoposide, could be due to the presence of a consensus sequence for topoisomerase II–induced cleavage, as defined earlier [21]. In the promoter region of *c-myc*, there is a sequence of 18 nucleotides with a 16/18 matching with this consensus sequence. We have, therefore, attempted to detect such sequences in the *bcr-abl* and the *bcl-x<sub>L</sub>* genes as obtained from Genbank (accession numbers U07000 and D30746, respectively). We indeed

A. Laroche-Clary et al.

found a sequence of 18 nucleotides in both genes, with a 16/18 matching for bcr-abl and a 15/18 matching for bcl- $x_L$ . This is in agreement with the hypothesis of a direct action of amsacrine and doxorubicin on gene expression via the stabilization of topoisomerase II–DNA complexes at specific sites. There was such a sequence in the abl gene (Genbank accession number M14752) studied under the same conditions, the best matching being of 12/18 nucleotides.

The fact that only doxorubicin-resistant cells are able to undergo apoptosis at cytotoxic exposures of amsacrine and doxorubicin remains puzzling. This may be related either to the regulations involved during MDR1 gene overexpression or to phenomena accompanying the acquisition of drug resistance, independently of the MDR1 gene. It is well known that numerous events occur during the process of selection of drug-resistant cells; we have shown that MDR cells are able to tolerate relatively high intracellular amounts of doxorubicin that may be sequestrated in compartments not allowing drug-DNA interaction [22, 23]. One can hypothesize that cytoplasmic drug may be present, in MDR cells, at sufficient levels to trigger apoptosis, which is not the case in sensitive cells where no drug sequestration occurs in cytoplasmic organelles. In that case, the effect of topoisomerase II inhibitors on bcr-abl or bcl-x<sub>1</sub> expression would be independent of the formation of cleavable complexes on specific sites present in its sequence.

This work was supported by grants from the Ligue Nationale contre le Cancer (Comités de la Gironde et de la Charente-Maritime). A.L.C. was a recipient of a doctoral fellowship from the Ligue Nationale contre le Cancer (Comité de la Dordogne) and from A.R.C. Prof. Jacques Bonnet is acknowledged for his constant interest in this work.

#### References

- 1. Watt PM and Hickson ID, Structure and function of type II topoisomerases. *Biochem J* **303**: 681–695, 1994.
- Capranico G, Kohn KW and Pommier Y, Local sequence requirement for DNA cleavage by mammalian topoisomerase II in the presence of doxorubicin. *Nucleic Acids Res* 18: 6611–6619, 1990.
- Covey JM, Kohn KW, Kerrigan D, Tilchen EJ and Pommier Y, Topoisomerase II-mediated DNA damage produced by 4'-(9-acridinylamino)methasulfon-m-anisidide and relative acridines in L210 cells and isolated nuclei: Relation to cytotoxicity. Cancer Res 48: 860–865, 1988.
- Riou JF, Vilarem MJ, Larsen CJ and Riou G, Characterization of the topoisomerase II-induced cleavage sites in the c-myc proto-oncogene. Biochem Pharmacol 35: 4409–4413, 1986.
- Clary A, Larrue A, Pourquier P and Robert J, Transcriptional down-regulation of c-myc expression in an erythroleukemic cell line, K562, and its doxorubicin-resistant variant by two topoisomerase II inhibitors, doxorubicin and amsacrine. Anticancer Drugs 9: 245–254, 1998.
- Campos L, Rouault JP, Sabido O, Oriol P, Roubi N, Vasselon C, Archimbaud E, Magaud JP and Guyotat D, High expression of bcl-2 protein in acute myeloid leukemia cells is associated with poor response to chemotherapy. *Blood* 81: 3091–3096, 1993.

- Chapman RS, Whetton AD, Chresta CM and Dive C, Characterization of drug resistance mediated via the suppression of apoptosis by Abelson protein tyrosine kinase. Mol Pharmacol 48: 334–343, 1995.
- 8. Smetsers T, van de Locht L, Pennings A, Wessels H, de Witte T and Mensink E, Phosphorathioate BCR-ABL antisense oligonucleotides induce cell death but fail to reduce cellular BCR-ABL protein levels. *Leukemia* 9: 118–130, 1994.
- Belloc F, Cotteret S, Labroille G, Schmit V, Jaloustre C, Dumain P, Durrieu F, Reiffers J, Boisseau MR, Bernard P and Lacombe F, Bcr-abl translocation can occur during the induction of multidrug resistance and confers apoptosis resistance on myeloid leukemic cell lines. Cell Death Differ 4: 806–814, 1997.
- Lozzio CB and Lozzio BB, Chronic myelogenous leukemia cell line with positive Philadelphia chromosome. *Blood* 45: 321– 334, 1975.
- Tsuruo T, Iida-Saito H, Kawabata H, Oh-Hara T, Hamada H and Utakoji T, Characteristics of resistance to adriamycin in human myelogenous leukemia K562 resistant to adriamycin and in isolated clones. *Jpn J Cancer Res* 77: 682–692, 1986.
- Carmichael J, DeGraaf WG, Gazdar AF, Minna JD and Mitchell JB, Evaluation of a tetrazolium-based semiautomated colorimetric assay: Assessment of chemosensitivity testing. Cancer Res 47: 936–942, 1987.
- Glisin V, Crkvenjakov R and Byus C, Ribonucleic acid isolated by cesium chloride centrifugation. *Biochemistry* 13: 2633–2640, 1974.
- Laemmli UK, Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685, 1970.
- Fan S, el-Deiry WS, Bae I, Freeman J, Jondle D, Bhatia K, Fornace AJ Jr, Magrath I, Kohn KW and O'Connor PM, P53 gene mutations are associated with decreased sensitivity of human lymphoma cells to DNA damaging agents. Cancer Res 54: 5824–5830, 1994.
- Benito A, Grillot D, Nunez G and Fernandez-Luna JL, Regulation and function of Bcl-2 during differentiationinduced cell death in HL-60 promyelocytic cells. Am J Pathol 146: 481–490, 1995.
- Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y and Greenberg ME, Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91: 213– 241, 1997.
- 18. Ritke MK, Rusnah JM, Lazo JS, Allan WP, Dive C, Heer S and Yallowich JC, Differential induction of etoposide-mediated apoptosis in human leukemia HL-60 and K562 cells. *Mol Pharmacol* **46:** 605–611, 1994.
- Barry MA, Reynolds JE and Eastman A, Etoposide-induced apoptosis in human HL-60 cells is associated with intracellular acidification. Cancer Res 53: 2349–2357, 1993.
- 20. Pommier Y, Orr A, Kohn KW and Riou JF, Differential effects of amsacrine and epipodophyllotoxins on topoisomerase II cleavage in the human c-myc promoter. Cancer Res 52: 3125–3130, 1992.
- Spitzner JR and Muller MT, A consensus sequence for cleavage by vertebrate DNA topoisomerase II. Nucleic Acids Res 16: 5533–5556, 1988.
- 22. Bennis S, Ichas F and Robert J, Differential effects of verapamil and quinine on the reversal of doxorubicin resistance in a human leukemia cell line. *Int J Cancer* **62:** 283–290, 1995.
- 23. Bennis S, Faure P, Chapey C, Hu YP, Fourche J, El Yamani J and Robert J, Cellular pharmacology of lipophilic anthracyclines in human tumor cells in culture selected for resistance to doxorubicin. *Anticancer Drugs* 8: 610–617, 1997.